Andrea Alberici – University of Tirana, Faculty of Economy, Rruga Arben Broci, 1, 1001, Tirana, Albania
Nevila Baci – University of Tirana, Faculty of Economy, Rruga Arben Broci, 1, 1001, Tirana, Albania
ย
Keywords:
Large Language Models;
Business analysis;
Domain-specific languages;
Retrieval-augmented
generation;
Prompt engineering;
Fine-tuning;
Intentional frameworks
Abstract: The rapid advancements in large language models (LLMs) could prove to have significantly impacted the field of business analysis, particuยญlarly in the development of domain-specific languages (DSLs) tailored to deยญscribe business requirements with precision and flexibility. The study highยญlights the substantial progress in LLM capabilities, including extended conยญtext understanding, enhanced reasoning, and mathematical functionยญalities, which collectively facilitate deeper integration of domain-specific knowledge into business analysis processes.
The authors critically assess the relevance of Retrieval Augmented Generยญative techniques that offer advanced knowledge injection methods, along with prompt engineering reasoning techniques, as opposed to fine-tunยญing LLMs. Furthermore, the research evaluates the strategic decision-makยญing process for business analysts in adopting these technological advanceยญments. The paper discusses whether business analysts should take a proacยญtive or cautious approach when incorporating these AI-driven methodoloยญgies into their analytical frameworks, or just wait for the next turn of LLMโs improvements.
By examining various case studies and conducting interviews with experts, this study provides insights into how the deliberate application of advanced LLM techniques can offset the services brought by RAG/Prompt engineerยญing techniques. The text also provides guidance for navigating the technoยญlogical landscape, indicating that it is important to stay updated with rapยญid advancements. A strategic combination of RAG, prompt engineering, and fine-tuning can provide a balanced and effective approach to creating inยญtentional frameworks that meet the evolving needs of businesses today.
Download full paper
8th International Scientific Conference – EMAN 2024 – Economics and Management: How to Cope With Disrupted Times, Rome, Italy, March 21, 2024, SELECTED PAPERS, published by: Association of Economists and Managers of the Balkans, Belgrade, Serbia; ISBN 978-86-80194-84-4, ISSN 2683-4510, DOI: https://doi.org/10.31410/EMAN.S.P.2024
Creative Commons Nonย Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.ย
REFERENCES
AI Collective. (2024). https://www.ai-collective.co.uk/
Asai, A., Wu, Z., Wang, Y., Sil, A., & Hajishirzi, H. (2023). Self-RAG: Learning to Retrieve, Generยญate, and Critique through Self-Reflection. https://doi.org/10.48550/arXiv.2310.11511
Bansal, L. (2024, January 16). A Complete Guide to RAG and LlamaIndex. Medium. https://pub.toยญwardsai.net/a-complete-guide-to-rag-and-llamaindex-2e1776655bfa
Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: A Pretrained Language Model for Scientific Text. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). https://doi.org/10.18653/v1/d19-1371
Chalkidis, I., Fergadiotis, M., Malakasiotis, P., Aletras, N., & Androutsopoulos, I. (2020). LEยญGAL-BERT: The Muppets straight out of Law School. Findings of the Association for Compuยญtational Linguistics: EMNLP 2020. https://doi.org/10.18653/v1/2020.findings-emnlp.26
Cheng, D., Huang, S., & Wei, F. (2024). Adapting Large Language Models via Reading Comprehenยญsion. https://doi.org/10.48550/arXiv.2309.09530
Cohere. (2024). Multi-step Tool Use (Agents). Cohere AI. https://docs.cohere.com/docs/multi-step-tool-use
DellโAcqua, F., McFowland, E., Mollick, E. R., Lifshitz-Assaf, H., Kellogg, K., Rajendran, S., Krayยญer, L., Candelon, F., & Lakhani, K. R. (2023a). Navigating the Jagged Technological Frontier: Field Experimental Evidence of the Effects of AI on Knowledge Worker Productivity and Qualยญity. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4573321
Drouin, A., Gasse, M., Caccia, M., Laradji, I. H., Del Verme, M., Marty, T., Boisvert, L., Thakkar, M., Cappart, Q., Vazquez, D., Chapados, N., & Lacoste, A. (2024). WorkArena: How Capable Are Web Agents at Solving Common Knowledge Work Tasks? http://arxiv.org/abs/2403.07718
Eladlev. (2024). Eladlev/AutoPrompt. https://github.com/Eladlev/AutoPrompt
Fan, T., Kang, Y., Ma, G., Chen, W., Wei, W., Fan, L., & Yang, Q. (2023). Fate-llm: A industrial grade federated learning framework for large language models. arXiv preprint arXiv:2310.10049.
GuidanceAI. (2024). Guidance-ai/guidance. https://github.com/guidance-ai/guidance
Honchar, A. (2024, March 15). Intro to LLM Agents with Langchain: When RAG is Not Enough. Medium. https://towardsdatascience.com/intro-to-llm-agents-with-langchain-when-rag-is-not-enough-7d8c08145834
Hong, S., Lin, Y., Liu, B., Liu, B., Wu, B., Li, D., Chen, J., Zhang, J., Wang, J., Zhang, L., Zhang, L., Yang, M., Zhuge, M., Guo, T., Zhou, T., Tao, W., Wang, W., Tang, X., Lu, X., โฆ Wu, C. (2024). Data Interpreter: An LLM Agent For Data Science https://doi.org/10.48550/arXiv.2402.18679
Hosni, Y. (2024, March 10). Prompt Engineering Best Practices: Iterative Prompt Development. https://medium.com/prompt-engineering-best-practices-iterative-prompt-development-22759b309919
Huang, C. (2024, February 28). Dpo_descriptiveness.py. Github. https://gist.github.com/vwxyzjn/64d91ce0b66b0548f1d2c33e855d168c
Jang, D.-H., Yun, S., & Han, D. (2024). Model Stock: All we need is just a few fine-tuned models. https://doi.org/10.48550/arXiv.2403.19522
Jeong, S., Baek, J., Cho, S., Hwang, S. J., & Park, J. C. (2024). Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity https://doi.org/10.48550/arXiv.2403.14403
Khattab, O., Shandilya, H., & Singhvi, A. (2023). DSPy documentation. https://dspy-docs.vercel.app/docs/intro
Krishnamurthy, A., Harris, K., Foster, D. J., Zhang, C., & Slivkins, A. (2024). Can large language models explore in-context? http://arxiv.org/abs/2403.15371
Lieber, O., Lenz, B., Bata, H., Cohen, G., Osin, J., Dalmedigos, I., Safahi, E., Meirom, S., Belinkov, Y., Shalev-Shwartz, S., Abend, O., Alon, R., Asida, T., Bergman, A., Glozman, R., Gokhman, M., Manevich, A., Ratner, N., Rozen, N., Schwartz, E., Zusman, M., & Shoham, Y. (2024). Jamยญba: A hybrid transformer-mamba language model. https://doi.org/10.48550/arXiv.2403.19887
Liu, Y., Iter, D., Xu, Y., Wang, S., Xu, R., & Zhu, C. (2023). G-Eval: NLG Evaluation using GPT-4 with Better Human Alignment. https://doi.org/10.48550/arXiv.2303.16634
Nguyen, I. (2024, March). Evaluating RAG Part I: How to Evaluate Document Retrieval. https://www.deepset.ai/blog/rag-evaluation-retrieval
NousResearch. (2024). NousResearch/Genstruct-7B ยท Hugging Face. https://huggingface.co/NousResearch/Genstruct-7B
Olickel, H. (n.d.). Better RAG 1: Advanced Basics. https://huggingface.co/blog/hrishioa/retrieval-augmented-generation-1-basics
Olickel, H. (2024). Better RAG 2: Single-shot is not good enough. https://huggingface.co/blog/hrishioa/retrieval-augmented-generation-2-walkingย ย
Packer, C., Wooders, S., Lin, K., Fang, V., Patil, S. G., Stoica, I., & Gonzalez, J. E. (2024). MemGPT: Towards LLMs as operating systems. arXiv. https://arxiv.org/abs/2310.06177ย
Sahota, H. (2023, October 20). RAG with LlamaIndex and DeciLM: A Step-by-Step Tutorial. Deci. https://deci.ai/blog/rag-with-llamaindex-and-decilm-a-step-by-step-tutorial/ย
Saravia, E. (2024, February 21). Removing RAG because of Context. X (Formerly Twitter). https://twitter.com/omarsar0/status/1760128830230978925ย ย
Sher, D. V. (2024, February 16). Using LangChain ReAct Agents for Answering Mulยญti-hop Questions in RAG Systems. Medium. https://towardsdatascience.com/using-langchain-react-agents-for-answeringmulti-hop-questions-in-rag-systems-893208c1847eย ย
Tao, W., Zhou, Y., Zhang, W., & Cheng, Y. (2024). MAGIS: LLM-Based Multi-Agent Framework for GitHub Issue Resolution. arXiv preprint arXiv:2403.17927.ย
Wahle, J., Ruas, T., Abdalla, M., Gipp, B., & Mohammad, S. (2023). We are Who We Cite: Bridges of Influence Between Natural Language Processing and Other Academic Fields. Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, 12896-12913. https://doi.org/10.18653/v1/2023.emnlp-main.797ย
Yang, C., Li, J., Niu, X., Du, X., Gao, S., Zhang, H., Chen, Z., Qu, X., Yuan, R., Li, Y., Liu, J., Huang, S. W., Yue, S., Chen, W., Fu, J., & Zhang, G. (2024). The Fine Line: Navigating Large Language Model Pretraining with Down-streaming Capability Analysis https://doi. org/10.48550/arXiv.2404.01204ย
Yang, C. J. (2024, March 24). Deterministic Document Structure based Retrieval. WhyHow.AI. https://medium.com/enterprise-rag/deterministic-document-structure-based-retrieval-472682f9629aย ย
Yi Tay. (2024, March 3). A New Open Source Flan 20B with UL2. https://www.yitay.net/blog/flan-ul2-20bย
Zhao, H., Liu, Z., Wu, Z., Li, Y., Yang, T., Shu, P., Xu, S., Dai, H., Zhao, L., Mai, G., Liu, N., & Liu, T. (2024). Revolutionizing Finance with LLMs: An Overview of Applications and Insights. https://doi.org/10.48550/arXiv.2401.11641ย