Hafsa Laรงi – University of Tirana, Faculty of Economy, Street Arben Broci 1, 1001, Tirana, Albania

Kozeta Sevrani – University of Tirana, Faculty of Economy, Street Arben Broci 1, 1001, Tirana, Albania

Keywords:
Image segmentation;
Medical images;
Deep learning;
Segmentation architecture

DOI: https://doi.org/10.31410/EMAN.2024.599

Abstract: Image segmentation plays a significant role in facilitating the arยญduous process of medical image analysis. There are numerous ways to perยญform image segmentation, but deep learning architectures have brought about a revolution in this field by automating it and improving the accuracy of the results. However, due to the complex nature of X-ray, MRI, or Ultrasound medical image modalities used for diagnosis, selecting the appropriate segยญmentation architecture becomes a challenging task.

This review follows a systematic methodology to screen the literature and exยญplore the available deep learning-based segmentation architectures applied across different diseases. It aims to contribute to existing research by identifyยญing if in the state-of-art exists any approach that can be adaptive for a broadยญer range of diseases. Furthermore, it seeks to evaluate computational and perยญformance efficiency when there is evidence

Download full paper

8th International Scientific Conference – EMAN 2024 – Economics and Management: How to Cope With Disrupted Times, Rome, Italy, March 21, 2024, CONFERENCE PROCEEDINGS, published by: Association of Economists and Managers of the Balkans, Belgrade, Serbia; ISBN 978-86-80194-83-7, ISSN 2683-4510, DOI: https://doi.org/10.31410/EMAN.2024

Creative Commons Nonย Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.ย 

Suggested citation
Laรงi, H., & Sevrani, K. (2024). A Comprehensive Review of Deep Learning-Based Image Segmentation Architectures Applied to Various Diseases. In C. A. Nastase, A. Monda, & R. Dias (Eds.), International Scientific Conference – EMAN 2024: Vol 8. Conference Proceedings (pp. 599-607). Association of Economists and Managers of the Balkans. https://doi.org/10.31410/EMAN.2024.599

REFERENCES

Ali, O., Ali, H., Shah, S. A. A., & Shahzad, A. (2022). Implementation of a Modified U-Net for Medical Image Segmentation on Edge Devices. IEEE Transactions on Circuits and Sysยญtems II: Express Briefs, 69(11), 4593 – 4597. https://doi.org/10.1109/TCSII.2022.3181132ย 

Almajalid, R., Shan, J., Du, Y., & Zhang, M. (2018). Development of a Deep-Learning-Based Method for Breast Ultrasound Image Segmentation. 2018 17th IEEE International Conferยญence on Machine Learning and Applications (ICMLA). Orlando, FL, USA: IEEE.

Alsenan, A., Youssef, B. B., & Alhichri, H. (2021). A Deep Learning Model based on MobileยญNetV3 and UNet for Spinal Cord Gray Matter Segmentation. 2021 44th International Conยญference on Telecommunications and Signal Processing (TSP) (244-248). Brno, Czech Reยญpublic: IEEE.

Baniasadi, M., Petersen, M. V., Gonรงalves, J., Horn, A., Vlasov, V., Hertel, F., & Husch, A. (2022). DBSegment: Fast and robust segmentation of deep brain structures considerยญing domain generalization. Human Brain Mapping Journal, 44(2), 762โ€“778. https://doi.org/10.1002/hbm.26097ย ย 

Benjelloun, M., El Adoui, M., & Larhmam, M. A. (2019). Automated Breast Tumor Segmenยญtation in DCE-MRI Using Deep Learning. 2018 4th International Conference on Cloud Computing Technologies and Applications (Cloudtech). Brussels, Belgium: IEEE.

Bnouni, N., Amor, H. B., Rekik, I., Rhim, M. S., Solaiman, B., & Amara, N. E. B. (2021). Boosting CNN Learning by Ensemble Image Preprocessing Methods for Cervical Cancer Segmentation. 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD). Monastir, Tunisia: IEEE.

Coroamฤƒ, D. M., Dioศ™an, L., Telecan, T., Andras, I., Criศ™an, N., Medan, P., Andreica, A., Caraยญiani, C., Lebovici, A., Boca, B., & Bรกlint, Z. (2023). Fully automated bladder tumor segmentation from T2 MRI images using 3D U-Net algorithm. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1096136ย 

Du, G., Cao, X., Liang, J., Chen, X., & Zhan, Y. (2020). Medical Image Segmentation based on U-Net: A Review. Journal of Imaging Science and Technology, 64(2). https://doi.org/10.2352/J.ImagingSci.Technol.2020.64.2.020508ย 

Estrada, S., Lu, R., Diers, K., Zeng, W., Ehses, Ph., Stรถcker, T., Breteler, M. M. B., & Reuter, M. (2021). Automated olfactory bulb segmentation on high resolutional T2-weighted MRI. NeuยญroImage, 242. https://doi.org/10.1016/j.neuroimage.2021.118464ย 

Guerroumi, N., Playout, C., Laporte, C., & Cheriet, F. (2019). Automatic Segmentation of the Scoยญliotic Spine from Mr Images. 2019 IEEE 16th International Symposium on Biomedical Imagยญing (ISBI 2019). Venice, Italy: IEEE.

Gupta, M., & Mishra, A. (2024). A systematic review of deep learning based image segmentation to detect polyp. Artificial Intelligence Review, 57(7). https://doi.org/10.1007/s10462-023-10621-1ย 

Hasan, S. M. K., & Linte, C. A. (2018). A Modified U-Net Convolutional Network Featuring a Nearest-neighbor Re-sampling-based Elastic-Transformation for Brain Tissue Characterizaยญtion and Segmentation. 2018 IEEE Western New York Image and Signal Processing Workยญshop (WNYISPW). Rochester, NY, USA: IEEE.

Huang, A., Jiang, L., Zhang, J., & Wang, Q. (2022). Attention-VGG16-UNet: a novel deep learning approach for automatic segmentation of the median nerve in ultrasound images. Quantitative Imaging in Medicine and Surgery, 12(6), 3138-3150. https://doi.org/10.21037/qims-21-1074ย 

Joshi, A., & Sharma, K. K. (2021). Hybrid Topology of Graph Convolution and Autoencoder Deep Network For Multiple Sclerosis Lesion Segmentation. 2021 International Conference on Arยญtificial Intelligence and Smart Systems (ICAIS). Coimbatore, India: IEEE.

Karimzadeh, R., Fatemizadeh, E., & Arabi, H. (2021). Attention-based deep learning segmentaยญtion: Application to brain tumor delineation. 2021 28th National and 6th International Iraniยญan Conference on Biomedical Engineering (ICBME). Tehran, Iran, Islamic Republic: IEEE.

Khouy, M., Jabrane, Y., Ameur, M., & El Hassani, A. H. (2023). Medical Image Segmentation Usยญing Automatic Optimized U-Net Architecture Based on Genetic Algorithm. Journal of Perยญsonalized Medicine, 13(9). https://doi.org/10.3390/jpm13091298ย 

Kumar, P., Nagar, P., Arora, Ch., & Gupta, A. (2018). U-Segnet: Fully Convolutional Neural Netยญwork Based Automated Brain Tissue Segmentation Tool. 2018 25th IEEE International Conยญference on Image Processing (ICIP). Athens, Greece: IEEE.

Liu, H., Hu, D., & Li, H. (2023). Medical Image Segmentation Using Deep Learning (T. 197). Maยญchine Learning for Brain Disorders. https://doi.org/https://doi.org/10.1007/978-1-0716-3195-9

Liu, X., Song, L., Liu, Sh., & Zhang, Y. (2021). A Review of Deep-Learning-Based Medical Imยญage Segmentation Methods. Sustainability, MDPI, 13(3). https://doi.org/10.3390/su13031224

Orlando, N., Gillies, D. J., Gyacskov, I., Romagnoli, C., Dโ€™Souza, D., & Fenster, A. (2020). Autoยญmatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultraยญsound images. The International Journal of Medical Physics Research and Practice, 47(6), 2413-2426. https://doi.org/10.1002/mp.14134ย 

Qamar, S., Jin, H., Zheng, R., & Ahmad, P. (2018). 3D Hyper-Dense Connected Convolutional Neural Network for Brain Tumor Segmentation. 2018 14th International Conference on Seยญmantics, Knowledge and Grids (SKG). Guangzhou, China: IEEE.

Rich, J. M., Bhardwaj, L. N., Shah, A., Gangal, K., Rapaka, M. S., Oberai, A. A., Fields, B. K. K., Matcuk Jr, G. R., & Duddalwar, V. A. (2023). Deep learning image segmentation approachยญes for malignant bone lesions: a systematic review and meta-analysis. Frontiers in Radioloยญgy, 3. https://doi.org/10.3389/fradi.2023.1241651

Shapey, J., Kujawa, A., Dorent, R., Wang, G., Dimitriadis, A., Grishchuk, D., Paddick, I., Kitchยญen, N., Bradford, R., Saeed, Sh. R., Bisdas, S., Ourselin, S., & Vercauteren, T. (2021). Segยญmentation of vestibular schwannoma from MRI, an open annotated dataset and baseline alยญgorithm. Scientific Data-Nature, 286. https://www.nature.com/articles/s41597-021-01064-wย 

Siddique, N., Paheding, S., Elkin, C. P., & Devabhaktuni, V. (2021). U-Net and Its Variants for Medical Image Segmentation: A Review of Theory and Applications. IEEE Access, 9, 82031 – 82057. https://doi.org/10.1109/ACCESS.2021.3086020ย 

Sun, L., Shao, W., Zhang, D., & Liu, M. (2019). Anatomical Attention Guided Deep Networks for ROI Segmentation of Brain MR Images. IEEE Transactions on Medical Imaging, 39(6), 2000 – 2012. https://doi.org/10.1109/TMI.2019.2962792ย 

Tricco, A. C., Lillie, E., Zarin, W., Oโ€™Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, Ch., McGowan , J., Stewยญart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, Ch., Lewin, S., Godfrey, Ch. M., Macdonald, M. T., Langlois, E. V., Soares-Weiser, K., Moriarty, J., Clifford, T., Tunรงalp, ร–., & Straus, Sh. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checkยญlist and Explanation. Annals of Internal Medicine, 169(7), 467-473. https://doi.org/10.7326/M18-0850ย  ย 

Wang, Ch., Guo, Y., Chen, W., & Yu, Z. (2019). Fully Automatic Intervertebral Disc Segmentation Using Multimodal 3D U-Net. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). Milwaukee, WI, USA: IEEE.

Wang, Q., Liu, Q., Luo, G., Liu, Zh., Huang, J., Zhou, Y., Xu, W., & Cheng, J. (2020). Automatยญed segmentation and diagnosis of pneumothorax on chest X-rays with fully convolutional multi-scale ScSE-DenseNet: a retrospective study. BMC Medical Informatics and Decision Making, 20(14). https://doi.org/10.1186/s12911-020-01325-5ย 

Yang, J., Faraji, M., & Basu, A. (2019). Robust segmentation of arterial walls in intravascular ultrasound images using Dual Path U-Net. Ultrasonics, 96, 24-33. https://doi.org/10.1016/j.ultras.2019.03.014ย 

Zhang, L., Zhang, K., & Pan, H. (2023). SUNet++: A Deep Network with Channel Attention for Small-Scale Object Segmentation on 3D Medical Images. Tsinghua Science and Technoloยญgy, 28(4), 628 – 638. https://doi.org/10.26599/TST.2022.9010023ย 

Zhang, W., Cheng, H., & Gan, J. (2020). MUNet: A Multi-scale U-Net Framework for Medical Image Segmentation. 2020 International Joint Conference on Neural Networks (IJCNN). Glasgow, UK: IEEE.

Zhao, L., Zhou, D., Jin, X., & Zhu, W. (2022). nn-TransUNet: An Automatic Deep Learning Pipeยญline for Heart MRI Segmentation. Life, MDPI, 12(10). https://doi.org/10.3390/life12101570ย 

Zhu, Q., Du, B., Wu, J., & Yan, P. (2018). A Deep Learning Health Data Analysis Approach: Auยญtomatic 3D Prostate MR Segmentation with Densely-Connected Volumetric ConvNets. 2018 International Joint Conference on Neural Networks (IJCNN). Rio de Janeiro, Brazil: IEEE.ย 

Share this