Hafsa Laçi – University of Tirana, Faculty of Economy, Street Arben Broci 1, 1001, Tirana, Albania
Kozeta Sevrani – University of Tirana, Faculty of Economy, Street Arben Broci 1, 1001, Tirana, Albania
Keywords:
Image segmentation;
Medical images;
Deep learning;
Segmentation architecture
Abstract: Image segmentation plays a significant role in facilitating the arduous process of medical image analysis. There are numerous ways to perform image segmentation, but deep learning architectures have brought about a revolution in this field by automating it and improving the accuracy of the results. However, due to the complex nature of X-ray, MRI, or Ultrasound medical image modalities used for diagnosis, selecting the appropriate segmentation architecture becomes a challenging task.
This review follows a systematic methodology to screen the literature and explore the available deep learning-based segmentation architectures applied across different diseases. It aims to contribute to existing research by identifying if in the state-of-art exists any approach that can be adaptive for a broader range of diseases. Furthermore, it seeks to evaluate computational and performance efficiency when there is evidence

Download full paper

8th International Scientific Conference – EMAN 2024 – Economics and Management: How to Cope With Disrupted Times, Rome, Italy, March 21, 2024, CONFERENCE PROCEEDINGS, published by: Association of Economists and Managers of the Balkans, Belgrade, Serbia; ISBN 978-86-80194-83-7, ISSN 2683-4510, DOI: https://doi.org/10.31410/EMAN.2024
Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission.
REFERENCES
Ali, O., Ali, H., Shah, S. A. A., & Shahzad, A. (2022). Implementation of a Modified U-Net for Medical Image Segmentation on Edge Devices. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(11), 4593 – 4597. https://doi.org/10.1109/TCSII.2022.3181132
Almajalid, R., Shan, J., Du, Y., & Zhang, M. (2018). Development of a Deep-Learning-Based Method for Breast Ultrasound Image Segmentation. 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). Orlando, FL, USA: IEEE.
Alsenan, A., Youssef, B. B., & Alhichri, H. (2021). A Deep Learning Model based on MobileNetV3 and UNet for Spinal Cord Gray Matter Segmentation. 2021 44th International Conference on Telecommunications and Signal Processing (TSP) (244-248). Brno, Czech Republic: IEEE.
Baniasadi, M., Petersen, M. V., Gonçalves, J., Horn, A., Vlasov, V., Hertel, F., & Husch, A. (2022). DBSegment: Fast and robust segmentation of deep brain structures considering domain generalization. Human Brain Mapping Journal, 44(2), 762–778. https://doi.org/10.1002/hbm.26097
Benjelloun, M., El Adoui, M., & Larhmam, M. A. (2019). Automated Breast Tumor Segmentation in DCE-MRI Using Deep Learning. 2018 4th International Conference on Cloud Computing Technologies and Applications (Cloudtech). Brussels, Belgium: IEEE.
Bnouni, N., Amor, H. B., Rekik, I., Rhim, M. S., Solaiman, B., & Amara, N. E. B. (2021). Boosting CNN Learning by Ensemble Image Preprocessing Methods for Cervical Cancer Segmentation. 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD). Monastir, Tunisia: IEEE.
Coroamă, D. M., Dioșan, L., Telecan, T., Andras, I., Crișan, N., Medan, P., Andreica, A., Caraiani, C., Lebovici, A., Boca, B., & Bálint, Z. (2023). Fully automated bladder tumor segmentation from T2 MRI images using 3D U-Net algorithm. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1096136
Du, G., Cao, X., Liang, J., Chen, X., & Zhan, Y. (2020). Medical Image Segmentation based on U-Net: A Review. Journal of Imaging Science and Technology, 64(2). https://doi.org/10.2352/J.ImagingSci.Technol.2020.64.2.020508
Estrada, S., Lu, R., Diers, K., Zeng, W., Ehses, Ph., Stöcker, T., Breteler, M. M. B., & Reuter, M. (2021). Automated olfactory bulb segmentation on high resolutional T2-weighted MRI. NeuroImage, 242. https://doi.org/10.1016/j.neuroimage.2021.118464
Guerroumi, N., Playout, C., Laporte, C., & Cheriet, F. (2019). Automatic Segmentation of the Scoliotic Spine from Mr Images. 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). Venice, Italy: IEEE.
Gupta, M., & Mishra, A. (2024). A systematic review of deep learning based image segmentation to detect polyp. Artificial Intelligence Review, 57(7). https://doi.org/10.1007/s10462-023-10621-1
Hasan, S. M. K., & Linte, C. A. (2018). A Modified U-Net Convolutional Network Featuring a Nearest-neighbor Re-sampling-based Elastic-Transformation for Brain Tissue Characterization and Segmentation. 2018 IEEE Western New York Image and Signal Processing Workshop (WNYISPW). Rochester, NY, USA: IEEE.
Huang, A., Jiang, L., Zhang, J., & Wang, Q. (2022). Attention-VGG16-UNet: a novel deep learning approach for automatic segmentation of the median nerve in ultrasound images. Quantitative Imaging in Medicine and Surgery, 12(6), 3138-3150. https://doi.org/10.21037/qims-21-1074
Joshi, A., & Sharma, K. K. (2021). Hybrid Topology of Graph Convolution and Autoencoder Deep Network For Multiple Sclerosis Lesion Segmentation. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). Coimbatore, India: IEEE.
Karimzadeh, R., Fatemizadeh, E., & Arabi, H. (2021). Attention-based deep learning segmentation: Application to brain tumor delineation. 2021 28th National and 6th International Iranian Conference on Biomedical Engineering (ICBME). Tehran, Iran, Islamic Republic: IEEE.
Khouy, M., Jabrane, Y., Ameur, M., & El Hassani, A. H. (2023). Medical Image Segmentation Using Automatic Optimized U-Net Architecture Based on Genetic Algorithm. Journal of Personalized Medicine, 13(9). https://doi.org/10.3390/jpm13091298
Kumar, P., Nagar, P., Arora, Ch., & Gupta, A. (2018). U-Segnet: Fully Convolutional Neural Network Based Automated Brain Tissue Segmentation Tool. 2018 25th IEEE International Conference on Image Processing (ICIP). Athens, Greece: IEEE.
Liu, H., Hu, D., & Li, H. (2023). Medical Image Segmentation Using Deep Learning (T. 197). Machine Learning for Brain Disorders. https://doi.org/https://doi.org/10.1007/978-1-0716-3195-9
Liu, X., Song, L., Liu, Sh., & Zhang, Y. (2021). A Review of Deep-Learning-Based Medical Image Segmentation Methods. Sustainability, MDPI, 13(3). https://doi.org/10.3390/su13031224
Orlando, N., Gillies, D. J., Gyacskov, I., Romagnoli, C., D’Souza, D., & Fenster, A. (2020). Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images. The International Journal of Medical Physics Research and Practice, 47(6), 2413-2426. https://doi.org/10.1002/mp.14134
Qamar, S., Jin, H., Zheng, R., & Ahmad, P. (2018). 3D Hyper-Dense Connected Convolutional Neural Network for Brain Tumor Segmentation. 2018 14th International Conference on Semantics, Knowledge and Grids (SKG). Guangzhou, China: IEEE.
Rich, J. M., Bhardwaj, L. N., Shah, A., Gangal, K., Rapaka, M. S., Oberai, A. A., Fields, B. K. K., Matcuk Jr, G. R., & Duddalwar, V. A. (2023). Deep learning image segmentation approaches for malignant bone lesions: a systematic review and meta-analysis. Frontiers in Radiology, 3. https://doi.org/10.3389/fradi.2023.1241651
Shapey, J., Kujawa, A., Dorent, R., Wang, G., Dimitriadis, A., Grishchuk, D., Paddick, I., Kitchen, N., Bradford, R., Saeed, Sh. R., Bisdas, S., Ourselin, S., & Vercauteren, T. (2021). Segmentation of vestibular schwannoma from MRI, an open annotated dataset and baseline algorithm. Scientific Data-Nature, 286. https://www.nature.com/articles/s41597-021-01064-w
Siddique, N., Paheding, S., Elkin, C. P., & Devabhaktuni, V. (2021). U-Net and Its Variants for Medical Image Segmentation: A Review of Theory and Applications. IEEE Access, 9, 82031 – 82057. https://doi.org/10.1109/ACCESS.2021.3086020
Sun, L., Shao, W., Zhang, D., & Liu, M. (2019). Anatomical Attention Guided Deep Networks for ROI Segmentation of Brain MR Images. IEEE Transactions on Medical Imaging, 39(6), 2000 – 2012. https://doi.org/10.1109/TMI.2019.2962792
Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, Ch., McGowan , J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, Ch., Lewin, S., Godfrey, Ch. M., Macdonald, M. T., Langlois, E. V., Soares-Weiser, K., Moriarty, J., Clifford, T., Tunçalp, Ö., & Straus, Sh. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Annals of Internal Medicine, 169(7), 467-473. https://doi.org/10.7326/M18-0850
Wang, Ch., Guo, Y., Chen, W., & Yu, Z. (2019). Fully Automatic Intervertebral Disc Segmentation Using Multimodal 3D U-Net. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). Milwaukee, WI, USA: IEEE.
Wang, Q., Liu, Q., Luo, G., Liu, Zh., Huang, J., Zhou, Y., Xu, W., & Cheng, J. (2020). Automated segmentation and diagnosis of pneumothorax on chest X-rays with fully convolutional multi-scale ScSE-DenseNet: a retrospective study. BMC Medical Informatics and Decision Making, 20(14). https://doi.org/10.1186/s12911-020-01325-5
Yang, J., Faraji, M., & Basu, A. (2019). Robust segmentation of arterial walls in intravascular ultrasound images using Dual Path U-Net. Ultrasonics, 96, 24-33. https://doi.org/10.1016/j.ultras.2019.03.014
Zhang, L., Zhang, K., & Pan, H. (2023). SUNet++: A Deep Network with Channel Attention for Small-Scale Object Segmentation on 3D Medical Images. Tsinghua Science and Technology, 28(4), 628 – 638. https://doi.org/10.26599/TST.2022.9010023
Zhang, W., Cheng, H., & Gan, J. (2020). MUNet: A Multi-scale U-Net Framework for Medical Image Segmentation. 2020 International Joint Conference on Neural Networks (IJCNN). Glasgow, UK: IEEE.
Zhao, L., Zhou, D., Jin, X., & Zhu, W. (2022). nn-TransUNet: An Automatic Deep Learning Pipeline for Heart MRI Segmentation. Life, MDPI, 12(10). https://doi.org/10.3390/life12101570
Zhu, Q., Du, B., Wu, J., & Yan, P. (2018). A Deep Learning Health Data Analysis Approach: Automatic 3D Prostate MR Segmentation with Densely-Connected Volumetric ConvNets. 2018 International Joint Conference on Neural Networks (IJCNN). Rio de Janeiro, Brazil: IEEE.
