Ľubica Hurbánková, Dominika Krasňanská
University of Economics in Bratislava, Dolnozemská cesta 1, 852 35 Bratislava, Slovak Republic
DOI: https://doi.org/10.31410/EMAN.2019.717
3rd International Scientific Conference – EMAN 2019 – Economics and Management: How to Cope With Disrupted Times, Ljubljana – Slovenia, March 28, 2019, CONFERENCE PROCEEDINGS published by: Association of Economists and Managers of the Balkans, Belgrade, Serbia; Faculty of Management Koper, Slovenia; Doba Business School – Maribor, Slovenia; Integrated Business Faculty – Skopje, Macedonia; Faculty of Management – Zajecar, Serbia, ISBN 978-86-80194-17-2, ISSN 2683-4510
Abstract:
The aim of the paper is to compare the European Union countries on the basis of selected socio-economic and demographic indicators for the year 2016. The following indicators are selected for analysis: gross domestic product per capita, government gross debt as a percentage of gross domestic product, inflation rate, unemployment rate, total fertility rate, infant mortality rate and crude divorce rate. The contribution of the paper is the order of countries on the basis of the above-mentioned indicators, from the best country to the worst country using one of the multidimensional comparison methods – the distance method from the fictitious object. The aim of these methods is to replace a number of selected indicators, on the basis of which we compare EU countries, with one final characteristic – an integral indicator to order the countries. By creating an integral indicator, heterogeneous variables, which are expressed in different units and therefore can´t be direct aggregated, are transformed to homogeneous indicators. Since the used indicators do not have the same weights, by the calculation are used the data weighted by weights I (calculated using the coefficient of variation) and weights II (calculated on the basis of the correlation matrix). The application of individual statistical methods is implemented through the programme Microsoft Office Excel.
Keywords:
Distance method from the fictitious object, European Union countries
REFERENCES
[1] Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. Multivariate data analysis. New York: Macmillan Publishing Company.
[2] Dufek, J. & Minařík, B. (1984). Poznámka ke stanovení vah ukazatelu. Statistika, 11, 486- 489.
[3] Křovák, J. & Študlar, J. (1983). Metody stanovení vah ukazatelu. Statistika. 12, 543-550.
[4] Jílek, J. (1996). Metody mezinárodního srovnávaní. Praha: Vysoká škola ekonomická.
[5] Vojtková, M. & Stankovičová, I. (2007). Viacrozmerné štatistické metódy s aplikáciami. Bratislava: Iura Edition.
[6] Pažitná, M. & Labudová, V. (2007). Metódy štatistického porovnávania. Bratislava: Vydavateľstvo EKONÓM.
[7] https://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&language=en&pcode= tec00001&plugin=1
[8] Gola, P. (2009, April 27) Veřejné dluhy ve světě – Česko si zatím stojí dobře. Retrieved February 28, 2019 from
[9] Šenkýřová, L. (2010, September 20) Čo znamená často skloňovaný pojem inflácia? Retrieved February 28, 2019 from
[10] https://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&plugin=1&pcode=tepsr_ wc170&language=en
[11] Jurčová, D. (2002) Krátky slovník základných demografický pojmov, Bratislava, Výskumné demografické centrum, pp. 37.
[12] https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=demo_minfind&lang=en
[13] https://ec.europa.eu/eurostat/tgm/refreshTableAction.do?tab=table&plugin=1&pcode= tps00206&language=en