Second International Scientific Conference on Economics and Management - EMAN 2018

TRENDS AND ACTUAL TECHNICAL SOLUTIONS FOR
IMPLEMENTATION OF DIGITAL ECOSYSTEMS

Alexandru Averian**
DOI: https://doi.org/10.31410/EMAN.2018.620

Abstract: In competitive markets a successful business strategy requires development of new
innovative services and products to acquire a higher value for the client. Developing the new
products is realized by collaboration of organizations that contribute to the added value of the
service or product. The term of business ecosystem is used to better describe organizational
collaboration that produces services of better value to the customer. Digital business
ecosystems are counterparts of business ecosystems exploiting self-organizing properties of
biological ecosystems which could include context-aware, self-organizing and scalable
architectures that can be implied in solving complex problems. The present article evaluates
existing technologies and protocols and proposes a set of solutions for implementing
environment layer from the architecture of species that populate a digital ecosystem. We
analyze the new service oriented middleware platform proposed for the modern auto vehicles,
and evaluate the possibility to adopt this technology into digital ecosystems.

Key words: digital ecosystems, environment, context, digital species

1. INTRODUCTION

environment" populated by digital entities which forms digital communities that evolve

and interact by information exchange and who trade digital objects produced in or
through the system [1]. Entities that participate and form the ecosystem can be applications
running on simple wearable devices or services executed on smartphones, personal computers,
or servers in data centers.

Digital ecosystems are a new type of application that relies on a "universal digital

A digital ecosystem is an open system, any entity can connect to the system (at least
theoretically) and interact with other entities to achieve the proposed objectives. The
interconnection of heterogeneous devices can easily be achieved in a laboratory environment,
but in reality it is difficult to obtain. To be able to communicate and interact in a dynamic and
open system, a standardization is needed at the level of communication protocols, services,
interfaces, and service semantics. Interoperability in a heterogeneous environment through
common interfaces can provide new entrants with the ability to collaborate or compete with
those already connected without making them dependent (or blocked) on a proprietary
technology. This paper analyze existing technologies and protocols and proposes a set of
technical solutions for implementation of environmental and context layers found in the
architecture of digital objects that populate a digital ecosystem as described in [2].

This paper is structured as follows. Section 2 presents the candidate systems for use in the
implementation of the communication medium for digital ecosystems. Section 3 presents
SOME/IP - a new service oriented middleware. Last section presents the conclusions and hints
for future work.

24 Politehnica University of Bucharest, Splaiul Independentei nr. 313, Sector 6, Bucharest, Romania

620

Second International Scientific Conference on Economics and Management - EMAN 2018

2. IMPLEMENTING THE DIGITAL
ENVIRONMENT

The environment level represents the way of
communication between digital objects that
inhabit a digital ecosystem. Digital
environment assures communication between
digital objects and allows for the exchange of
data, messages and commands between
entities living within the ecosystem. We
cannot use a centralized, client-server model
because it is not resilient, is not error tolerant,
is not scalable and can be vulnerable to
attacks. The environment will generally be a
peer to peer (P2P) system because it has a
number of advantages over the centralized
model. These advantages result from the
network definition, a P2P system is defined as
a network in which all nodes are equivalent to
each other, in the sense that all nodes can
execute (in principle) the same set of
functions required for network operation. P2P
is defined at the application level, it offers the

ALEXANDRU

AVERIAN

Lecturer drd,

Bucharest, Romania

Born: 1976

Interests: digital

ecosystems, parallel

and distributed

computing, advanced information

technologies and programming.

Details:

A. Averian received his B.S. in computer
science (2002) from University of Bucharest,
Romania, in present he is studying digital
ecosystems as PhD student at Politehnica
University of Bucharest. Starting with 2002,
he has been lecturer of computer science at
Spiru Haret University. His current research
interests include different aspects of social
and natural computing, digital ecosystems,
modelling and simulation, software reliability
and agile methodologies.

possibility of sharing data and computing
resources (files, digital objects, processing services), being overlapped over the physical
infrastructure of the Internet. The most important features of a P2P network are:
= resource sharing through direct transfer without intermediaries or centralized servers,
in some cases centralized servers can be used for network initialization, node
management;
= no central nodes, no central failure points, without central attack points;
= nodes actively participate in operations such as information management, resource
search, data storage and management;
= the network has the ability to adapt to its variations in connectivity, to topology
changes, the ability to reconfigure itself for an error;
= P2P network topology is tolerant to defects, having self-organizing ability to maintain
network functionality and performance;
= the network can be structured or not, the physical proximity between the nodes is not
important;
= the connections between the nodes are TCP connections, but can be represented by
pointers to services;
* maintaining the network and verifying the connectivity is done by sending periodically
some ping messages, in the case of detecting the fall of some nodes, the site can
establish new connections.

In the following figure we have a classification of machine to machine (M2M) communication
systems that can be used to implement the environment level of digital ecosystems. These can
be divided into four major categories: Remote Procedure Call (RPC), Object/Component
Oriented Middleware (OCOM), Transaction Oriented Middleware (TOM), and Message
Oriented Middleware (MOM).

621

Second International Scientific Conference on Economics and Management - EMAN 2018

Remote
4 Procedure Call _ _
: 4 Publish/Subscribe
. Message oriented »| Message Queuing

_ / Middleware
Middleware

e

Message passing

~al Transaction oriented
Middleware

{ Object/Component
based Middleware

Figure 1. Classification of M2M communication systems
2.1 Remote procedure call

A Remote Procedure Call (RPC) based system offers an infrastructure that invokes the
procedures that will run on remote servers. It typically comes in the form of an API that allows
remote synchronous calls and abstracts the communication details. This model is not scalable,
not error-tolerant, is best suited for distributed applications based on a client-server
communication model. The following figure describes the architecture of applications using
remote procedure call.

client % server

user

Application Server app
v i V t
Client stub Server stub
v t v t
Client runtime | [Server runtime
y t J A
Transport

Figure 2. Remote procedure call
2.2. Object/Component based middleware

A Component based middleware is using an object-oriented programming model that allows
communication between remote objects. This type of system extends the RPC model by adding
new concepts specific to object oriented programming languages such as: encapsulation,
inheritance, exceptions, etc. The system allows for (a)synchronous invocation of methods of
interfaces that represents remote services. Such a system has limited scalability and is not
suitable to implement the environment level for digital ecosystems.

622

Second International Scientific Conference on Economics and Management - EMAN 2018

2.3. Transaction Oriented Middleware

A Transaction Oriented Middleware is primarily used in database applications that perform
different transactions in a distributed environment. The system ensures the accuracy of
transactions between heterogeneous hosts, but introduces a significant overhead in operation.
It allows both synchronous and asynchronous operation and is suitable in the interaction
between application servers and database management systems. The QoS guarantees provided
by this type of middleware are not always necessary.

2.4. Message Oriented Middleware

Message Oriented Middleware (MOM) is a family of middleware products that facilitates
messaging across distributed systems. MOM systems offer a number of features such as
synchronous and asynchronous communication, data transformation capabilities, application
decoupling (or weak coupling), parallel message processing and multiple QoS levels. A MOM
system uses one of the following communication paradigms: message passing, indirect queuing,
publish/subscribe communication (data is published through a topic, and customers receive all
messages posted by the topic they are subscribed to). In this category of systems we will analyze
two products that support the publish/subscribe model, namely Message Queue Telemetry
Transport and Data Distribution System.

Message Queue Telemetry Transport (MQTT) is a messaging protocol introduced by IBM
in 1999, standardized by OASIS in 2013 [2]. MQTT is optimized for centralized data collection
and analysis, connecting sensors, mobile and embeded devices to data processing applications
running in data center. Sensors, devices and applications communicate through a message
broker running on a server. All operations use a routing mechanism (one-to-one, one-to-many,
many-to-many) which enable it as on optimal protocol for IoT. MQTT is composed of three
components, publisher, subscriber and broker. Any device interested in some subject will
register as a subscriber for specific topics and the broker will inform it when publishers emit
data in interested topics. The following figure describes the architecture of the MQTT system.

MQTT Architecture

v subscriber

publisher ~au,,
e - A ,
N <= subscriber
publisher e broker :

subscriber

Figure 3. The architecture of the MQTT system

Data Distribution System (DDS) is a publish-subscribe protocol for real-time M2M
communicatios developed by OMG [3]. DDS is a good choice for distributed processing of data
coming directly from sensors, devices and applications without using any centralized IT
infrastructure. The following figure shows the components that are contained in a M2M
publish/subscribe communications framework such as DDS [4].

623

Second International Scientific Conference on Economics and Management - EMAN 2018

QoS POHCy 4*— Entity — Condition
I* A %
<<|nterface> > / 14
Listener) WaitSet
| |
‘ Publisher ‘ Topic Subscriber
,] N 1 T ™ * :\,I
* * * L
DataWriter —<Interfaces DataReader
DataType
A
Data

Figure 4. The components of a DDS middleware

A M2M middleware with publish/subscribe communication scheme exposes the following
features:
= no central failure point - each application has a clear picture of what happens in the
system, but it only depends on the data from its own context. Application failure
affects only applications that depend on it.
= redundancy - multiple publishers may publish the same type of data, if one of the
emitters is out of the system, a subscriber will receive further data from the emitters
remaining in the system;
= discovery protocol allows applications to automatically recognize and exchange
data based on the used topic.

Of the three communication models mentioned, publish/subscribe is best suited for building the
environment level as it ensures asynchronous, scalable, many-to-many communication. In this
scheme, the messaging emitters communicate with the subscribers, without prior knowledge,
through a distributed P2P infrastructure. The system supports data filtering and allows a
decoupling in terms of time, space and synchronization.

Time-based decoupling permits the broadcaster and receiver to cooperate directly and to
communicate without having to be online at the same time. Decoupling in space refers to the
fact that the transmitter and receiver are unaware of each other, their identity and location is not
relevant. Synchronization decoupling refers to the fact that the receivers and transmitters do not
have to synchronize, communication is accomplished by asynchronous notifications
implemented with a callback mechanism.

624

Second International Scientific Conference on Economics and Management - EMAN 2018

Data filtering at reception can be implemented in two ways: subject-based filtering and content-
based filtering. Subject-based filtering requires that messages are specifically labeled as
belonging to a topic. In this way, the receiver will only receive messages that belong to a
relevant topic and to which he has subscribed. Content-based filtering allows the delivery of
messages to a handset only if the content of the messages matches a criteria set by the receiver.
Publish/subscribe systems offer a range of QoS policies that provide a variety of properties such
as: volatility, persistence, sustainability, prioritization and delivery.

For sending messages to the environment or for exchanging data between entities, a RPC
communication scheme will be used. In 2017 OMG issued a standard for implementing a RPC
protocol over DDS. Although the first implementations appeared from 2014, the standard was
published in April 2017. It can be downloaded at http://www.omg.org/spec/DDS-RPC/1.0/. The
general scheme of the RPC protocol over DDS can be seen in the following figure.

client RPC over DDS RPC over DDS server

o)) o

invoke(op) r% » DataWriter » DataReader r% » invoke(op)
= =
fes) D
45] Q
(o)) o v
(4] (4]
2]

return(result) < 2« DataReader [« DataWriter [« 2« return(result)
© ' o

Figure 5. Implementation of RPC scheme over publish/subscribe

Depending on the type of application, the environment level can be implemented through a real-
time data distribution system (DDS) or other messaging-oriented middleware such as:
Extensible Messaging and Presence Protocol (XMPP), Advanced Message Queuing Protocol
(AMQP), Message Queue Telemetry Transport (MQTT), or Constrained Application Protocol
(COAP). These systems are used to realize machine-to-machine interconnections in 10T
applications [5], [6].

3. SCALABLE SERVICE-ORIENTED MIDDLEWARE OVER IP

Automotive technology has evolved over time, turning cars into from a simple internal
combustion engine with wheels to moving fusion of integrated computer systems. The
evolution continues by integrating vehicles into an extended ecosystem in which they will
communicate with each other and with the road infrastructure they use. The following are
examples of technologies which are being developed and deployed that relate to automotive
ecosystem:
= connected cars through mobile or Wi-Fi, these systems will allow not only functions
such as real time traffic information, and video streaming but also remote
diagnostics and updating of firmware;
= vehicle to vehicle communications will be used for cars to coordinate with each
other in a digital ecosystem;
= augmented reality dashboards will provide information about objects on the road, if
the driver looks towards an object the car will zoom in to see far away objects;
= intelligent charging of electric and hybrid vehicles;

625

Second International Scientific Conference on Economics and Management - EMAN 2018

= vehicle remote access, check vehicle fill level via smartphone app;
= autonomous vehicles will be able to drive passengers and make deliveries without
any driver.

As part of this evolution SOME/IP is introduced as a communication middleware which
interconnect and extend other in car communication protocols like CAN, LIN and FlexRay [7].
SOME/IP is the only known middleware that was designed to be integrated into AUTOSAR
4.x release [8]. While other middleware solutions often only support single communication
features (RPC or publish/subscribe), SOME/IP supports a wide range of middleware features
[9], as one can see in the next figure:

= serialization — transforming into and from on-wire representation;

= remote procedure call —implementing remote invocation of functions;

= service discovery— dynamically finding the functionality and configuring its access;

= publish/subscribe — dynamically configuring which data is needed and shall be sent

to the client;
= fire and forget, events and event groups, field modification;

Some/IP types of services
Client Server

Request e
Response Qle— |

Fire and forget \
Event «///'//

Field ‘t%

Figure 6. SOME/IP communication models |

Some possible disadvantages of SOME/IP [10] are: computational overhead due to complex
architecture, less suitable for hard real time systems and safety critical system (yet good for
infotainment and driver assistance system with high requirements on data rate).

4. ANALYSIS AND CONCLUSIONS

This paper assesses existing technologies and protocols and proposes a set of solutions for
implementation of environment and context layers present in the infrastructure of digital
ecosystems. This work follows the study conducted in [11] and continue the research that was
presented in respective paper. In the Message Oriented Middleware category we evaluated two
products that support the publish/subscribe model, namely Message Queue Telemetry
Transport and Data Distribution System. From automotive realm we introduced and evaluated
SOME/IP middleware, conclusions can be observed in the following table.

626

Second International Scientific Conference on Economics and Management - EMAN 2018

Data-centric middleware
DDS

Message oriented
middleware
MQTT

Service — oriented
middleware
SOME/IP

centralized, server-

Architecture decentralized, peer to peer based bus, peer to peer
.. . it involved minimal initial
Administration often autonomous . .
configuration configuration
no, clients
Discovery dynamic discovery service | configured with discovery mechanism
server address
Transport udp, tcp tep udp, tcp
Security tls tls no
Rpe emulated no yes
Publish/subscribe | yes yes yes
Events by data by message yes, event groups
QoS yes minimal intrinsec

Content awareness

data-centric, content
filtering and routing

data-agnostic

data-agnostic

as responsive as

as responsive as

Real-time must keep up with data . .
pup possible possible
manufacturing control, . .
o . mobile device to
monitoring of power grid, .
. server messaging,
control of robotics and .
. point of sale, . .
unmanned vehicles,) D automotive driver
. . patient monitoring, . .
Usage automotive driver safety Termote resource safety and infotainment,
g and infotainment, o could be extended to
monitoring, .
aerospace and defense . vehicle remote access
. automotive
control, high-performance .
. telematics
computing, low latency
finance, real-time trading
could be extended to
minimize future require accommodate vehicle to

In time evolution

complexity and
deployment time, evolution

administration and
integration efforts

vehicle and vehicle to
infrastructure
communication

From digital ecosystem perspective a communication middleware with support of more
communication schemes like RPC, pub/sub and events is more suited for building the
environment level in digital ecosystems. The systems with pub/sub communication scheme
where used in development of context models for digital ecosystems, as described in [12]
article. Future studies will focus on expanding and automating the use of some/ip along with
common-api technology from GENIVI [13]

ACKNOWLEDGEMENTS
The work has been funded by the Sectoral Operational Programme Human Resources

Development 2007-2013 of the Ministry of European Funds through the Financial Agreement
POSDRU/159/1.5/S/132395.

627

Second International Scientific Conference on Economics and Management - EMAN 2018

REFERENCES

[1]
(2]
[3]
[4]

[5]
[6]

[7]

[8]
[9]

P. Dini et al., “Beyond interoperability to digital ecosystems: regional innovation and
socio-economic development led by SMEs,” 2008.

D. Locke, “MQTT V3.1 Protocol Specification,” IBM, 2013. [Online]. Available:
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html.

“Data Distribution Service for Real-time Systems,” OMG, 2015. [Online]. Available:
http://www.omg.org/spec/DDS/1.4/.

J. M. Cruz, A. Romero-garcés, J. Pedro, B. Rubio, R. M. Robles, and A. B. Rubio, “A
DDS-based middleware for quality-of-service and high-performance networked robotics,”
2012.

E. Borgia, “The Internet of Things vision : Key features , applications and open issues,”
Comput. Commun., vol. 54, pp. 1-31, 2014.

A. Al-Fugaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of
Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE
Commun. Surv. Tutorials, vol. 17, no. 4, pp. 2347-2376, 2015.

A. Kern, “Ethernet and IP for Automotive E / E-Architectures Technology Analysis ,
Migration Concepts and Infrastructure,” 2012.

M. Weber, “The Future of Ethernet in AUTOSAR,” in Autosar Open Conference, 2014.
J. R. Seyler, T. Streichert, M. GlaB3, N. Navet, and J. Teich, “Formal analysis of the startup
delay of SOME/IP service discovery,” in 2015 Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2015, pp. 49-54.

[10]J. Diemer, D. Thiele, and R. Ernst, “Formal worst-case timing analysis of Ethernet

topologies with strict-priority and AVB switching,” in 7th IEEE International Symposium
on Industrial Embedded Systems (SIES’12), 2012, pp. 1-10.

[11]A. Averian, “Supply chain modelling as digital ecosystem,” in Proceedings of

International Scientific Conference ITEMA 2017, 2017, pp. 27-35.

[12] A. Averian, “Towards More Context-Awareness in Reactive Digital Ecosystems,” in

Creativity in Intelligent Technologies and Data Science: Second Conference, CIT{&}DS
2017, Volgograd, Russia, September 12-14, 2017, Proceedings, A. Kravets, M.
Shcherbakov, M. Kultsova, and P. Groumpos, Eds. Cham: Springer International
Publishing, 2017, pp. 640—654.

[13] GENIVI, “CommonAPI SOME/IP C++ User Guide,” GENIVI, 2013. [Online]. Available:

https://docs.projects.genivi.org/ipc.common-api.cpp-someip-
tools/3.1.3/pdf/CommonAPISomelPCppUserGuide.pdf.

628

